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Abstract
In this paper, I review some of the recent results obtained, using molecular
dynamics simulations, on the out-of-equilibrium behaviour of glass-forming
systems. Both the ageing (evolution after a fast quench in the glassy phase)
and the driven (evolution under uniform shear flow) situations are considered.
The theoretical concept of effective temperature that was shown to characterize
such nonequilibrium states well is also discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In textbooks, the description of glassy systems is often limited to that of simple molecular
glasses, such as silica, or polymeric glasses. In the last ten years, however, it has become
increasingly evident that a much broader conception of ‘glassy’ behaviour could be fruitful.
In some sense, all systems that do not explore their phase space in a (quasi-) ergodic manner
can be considered as glassy, in the sense described for example in the classic book by Ma [1].
Glassiness, in that sense, is indeed a matter of timescales, not of molecular structure. This
has recently prompted many researchers to investigate ‘glassiness’ in systems as diverse as
foams, emulsions, colloidal pastes, and granular media, which share the property of having a
relaxation time τ longer than, or comparable to, the experimental timescales [2].

Another important outcome of theoretical,experimental, and numerical work in the last ten
years is the understanding that the nonequilibrium behaviour of such glassy systems could be
usefully discussed and described within a statistical physics perspective. Although nonequilib-
rium systems have been widely studied in material sciences and rheology, notions from statis-
tical physics—such as correlation and response functions—have seldom been used in the field.

In this paper, I will review some of these efforts, putting particular emphasis on results
that were obtained using numerical approaches in the field of liquids, and on the theoretical
framework provided by the ‘mean-field’ or ‘mode-coupling’ theories [3]. I will only refer much
more briefly to the equally important ‘soft glassy rheology’ and ‘potential energy landscape’
approaches, which are undergoing parallel development.
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Conceptually, and even practically, nonequilibrium behaviour is observed in two typical
situations. The first one is where the material, whose relaxation time is very long (in some
cases, essentially infinite), is simply left to age after modifying some external parameter
(e.g. temperature, pressure) or after preparation in some initial state (foams, grains, colloids).
The corresponding ageing phenomena are characterized by a very slow drift of thermodynamic
quantities such as energy or volume, but also by much more spectacular changes in the responses
to a time-dependent stimulus. These changes, which have been widely investigated by materials
scientists (in particular for polymeric glasses) [4], received much more attention from physicists
in the context of spin glasses, and their interpretation prompted the development of several
theoretical approaches in the 1990s.

The second practical way of creating a nonequilibrium situation is to drive the system
through the application of some external field or force, which feeds energy into the system on
large scales. The commonest example of such a drive is simple shear, which is routinely used to
study the rheological properties of complex fluids. The drive may be oscillatory or permanent,
and in the following we will concentrate on the latter case. A simple dimensional analysis
suggests that the shear rate γ , which has the dimension of a frequency, should be combined
with the relaxation time τ to form the so-called Deborah number De = γ τ . Investigating
systems with a large relaxation time implies a large range of Deborah numbers, in particular
the possibility of having a large De without using exceedingly large shear rates. The separation
of timescales between a large relaxation time and the ‘microscopic’ relaxation times is of course
the crucial ingredient here.

As many of the results discussed in this paper are obtained from classical molecular
simulations (mostly based on molecular dynamics, but there is little doubt that Brownian
dynamics or kinetic Monte Carlo dynamics would lead to similar results), it is appropriate
to briefly discuss here what we mean by ‘long times’. In our view, there are two essential
points that can be taken as characterizing glassy behaviour: the fact that the relaxation time
becomes comparable to the ‘experimental’ timescale, and the fact that the relaxation time
is well separated from the microscopic (vibrational) timescale. In computer simulations, the
‘experimental’ scale is of course much shorter than in laboratory experiments, but with present-
day computers a very reasonable timescale separation can be achieved with microscopic
scales—by typically 5–6 orders of magnitude—so one can reasonably hope to get some insight
into ‘glassy’ behaviour by using such simulations. Obviously not all dynamical processes are
within the reach of computer simulations—e.g. crossing high energy barriers is not possible
on the timescales under consideration—but an interesting phenomenology is nevertheless
expected.

The paper is organized as follows. I will first recall some of the theoretical background,
then the main results obtained from computer simulations on ageing and driven systems; a
short section will be devoted to the concept of effective temperature.

2. Theoretical background

Two broad classes of models have been proposed to describe the phenomenology of ageing and
driven glassy systems. The first class, developed in particular by Bouchaud and co-workers [5],
is that of ‘trap models’ and the associated ‘soft glassy rheology’ [6]. Briefly speaking, the idea
is to describe the system as a point evolving in a complex energy landscape. This point gets
trapped in energy minima, and escapes from these minima with a rate given by an Arrhenius
law. The correlation functions of the model can then be entirely specified by the distribution
of energy minima. When this distribution is exponential, of the form p(E) ∼ exp(−αE),
the resulting escape times become broadly distributed (no first moment) when the inverse
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temperature β > α. As a result, the system cannot equilibrate for such low temperatures, and
ageing phenomena are observed.

The generalization of this picture to driven systems, as proposed in [6], consists in
introducing an extra dependence of the trap depths on a parameter � that describes the ‘state of
strain’ of the system. In simple shear, � grows linearly with time and adds a quadratic energy
to the trap depth, i.e. −E → −E + k�2/2. The larger the strain, the easier the escape from
the trap. After escaping the strained trap, the system falls again at random into an unstrained
trap chosen at random. This ‘soft glassy rheology’ model is quite simple (in the sense that the
probability P(E, �, t) in the energy–strain space obeys a simple rate equation, but still leads to
a number of nontrivial predictions for the (linear and nonlinear) rheological behaviour. These
predictions are reviewed in [6], and have been used to rationalize a number of experimental
findings on complex fluids (see e.g. [7]).

The second class of models, originally developed in the context of spin glasses, is based on
the fact that some disordered spin systems can be solved in the mean-field (infinite-dimension)
limit. Interestingly, these systems can be shown (in the mean-field limit) to undergo a transition
from an ergodic state to a nonergodic one at some finite temperature Td , similar to the glass
transition predicted by the ‘mode-coupling’ theories of liquids [8, 9]. Below Td , these systems
display ageing, in the sense that correlation functions of the type C(t, t ′) = 〈A(t ′)A(t)〉 depend
both on the time t = tw (waiting time) spent in the glass phase and on the time difference
τ = t ′ − t . Some properties of the ageing correlation functions can be calculated essentially
exactly. In particular, it can be shown that, in the long-waiting-time limit, correlation functions
C and their associated response functions R obey a generalization of the equilibrium fluctuation
dissipation theorem, which can be written as

R(t, t ′) = X (C)
∂C(t, t ′)

∂ t
. (1)

The function X (C) is called the fluctuation dissipation ratio (FDR). Such relations are most
conveniently displayed in the form of a parametric plot [10] in which the integrated response
following a step in the field at tw (or susceptibility), M(tw, tw + τ ) = ∫ tw+τ

tw
R(s, tw + τ ) ds =∫ C(tw ,tw)

C(tw ,tw+τ)
X (C) dC is plotted as a function of the correlation. In such a plot, the existence of an

asymptotic limit is easily proved by checking that a collapse of the curves obtained for different
values of tw occurs, and that the FDR is the slope of the limiting curve. In equilibrium, this
slope is just the inverse of the thermodynamic temperature. This allowed the authors of [11]
to introduce the notion of an effective temperature associated with the FDR, which will be
discussed in more detail in section 4.

Generalizing this type of model to a ‘driven’ situation can be achieved by adding to the
equations of motion for the spins a term that cannot be derived from a Hamiltonian, therefore
violating the detailed balance conditions. This was done in [12], and we briefly summarize
here the main results obtained in this reference, for a simple system (the ‘ p-spin’ mean-field
model), studied under conditions that involved a constant energy input from an external driving
force, analogous to the effect of shear on a fluid. The resulting stationary nonequilibrium state
was studied as a function of the external drive (the intensity of which will be denoted by ε)
and temperature T .

For ε = 0, the model has an ideal glass transition (diverging relaxation time) at a finite
temperature Tc. For T > Tc, the correlation functions are described by mode-coupling-like
differential equations, and display the characteristic two-step relaxation predicted by these
equations. Below Tc, the system cannot equilibrate, and displays ‘ageing’ behaviour.

Under a finite external drive (ε �= 0), the system is stationary at all temperatures. For
T < Tc, and in the asymptotic limit ε → 0, the correlation functions retain the characteristic
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Figure 1. ‘Shear thinning’ of the correlation function in the p-spin model under an external drive.
The decay of the spin–spin correlation function (here at T slightly above Tc) is accelerated by the
external drive.

two-step shape of the equilibrium system, with an α-relaxation time that depends on γ . For
T < Tc, this relaxation time diverges as γ → 0, while for T > Tc it goes to its equilibrium
value in this limit.

On the basis of a power dissipation argument, we were able, for this simple system, to
define quantities equivalent to the viscosity η and shear rate γ in a fluid under shear. This
‘viscosity’ was found to have a characteristic shear thinning behaviour, with a shear thinning
exponent equal to −2/3 for T > Tc. For T < Tc, the viscosity diverges as γ → 0, and the
shear thinning exponent appears to depend on temperature.

The behaviour of the FDR was also investigated as a function of T and γ . In a system
invariant under time translation, the relation for the FDR is of the form given by

R(t) = − X (C)

kB T

dC

dt
. (2)

Here R(t) and C(t) are, respectively, a response function and the associated correlation
function. In equilibrium, the fluctuation dissipation theorem can be written as X (C) = 1.
In the sheared system, the FDR is found, for T < Tc, to be a discontinuous function of C
in the limit γ → 0. For C > q , the Edwards–Anderson parameter X (C) = 1, while for
C < q , X (C) = m < 1, indicating the existence of an effective temperature larger than the
bath temperature for long timescales [11]. At finite shear γ �= 0, the FDR also has an almost
discontinuous behaviour as a function of C . For T > Tc, the discontinuity decreases and
vanishes when γ → 0, so equilibrium behaviour is recovered in this limit.

These results are summarized in figures 1 and 2.

3. Some results from simulations

3.1. The model

The system simulated in our work is an 80:20 mixture of Lennard-Jones particles, with
interactions

V (ri j) = 4εi j

[(
σi j

ri j

)12

−
(

σi j

ri j

)6]
(3)

(i and j refer to the two species A and B) and interaction parameters that prevent
crystallization [13]. Throughout the paper, the length, energy, and time units are the
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Figure 2. Left panel: ‘viscosity’ (proportional to the relaxation time) versus ‘shear rate’ in the
p-spin model under an external drive. Right panel: the same result for T < Tc, rescaled to
demonstrate that the shear thinning exponent is 2/3.

standard Lennard-Jones units σAA (particle diameter), εAA (interaction energy), and τ0 =
(m Aσ 2

AA/εAA)1/2, where m A is the particle mass and the subscript A refers to the majority
species. Particles have equal masses, and the interaction parameters are εAB = 1.5 εAA,
εB B = 0.5 εAA, σB B = 0.88 σAA , σAB = 0.8 σAA. With these parameters for interactions
between species, the equilibrium (high-temperature) properties of the system have been fully
characterized. At the reduced density ρ = 1.2, where all our simulations are carried out, a
‘computer glass transition’ is found in the vicinity of Tc = 0.435 and the slowing down of the
dynamics seems to be described well by mode-coupling theory [13].

3.2. ‘Ageing’ in a computer simulation

The first studies of this model under nonequilibrium conditions of the ageing type were
presented in [15]. The simulation procedure consisted in quenching the system to a low
temperature, and monitoring the evolution of the correlation and response functions as a
function of the waiting time tw (time elapsed after the quench). The correlation function
under consideration is the self-part of the dynamical structure factor, denoted by Ck , and the
associated integrated response function Mk is obtained by applying a sinusoidal field to tagged
particles. The essential results, illustrated in figures 3 and 4, are that the correlation functions
‘age’ typically with a relaxation time that increases with tw as tα

w (α close to unity), and that
the response and correlation are linked by a relation similar to that predicted for simple mean-
field spin glass models, i.e. a ‘two-temperature’ relation, in which the FDT plot is essentially
constituted by two straight lines. These results [14, 15], which confirm the close relation
between spin glass models undergoing ‘one-step’ replica symmetry breaking and structural
glasses, have been confirmed by a number of simulation studies.

3.3. Driving a glassy system with an external shear

The same system can be subjected to an external drive by imposing a uniform shear flow
through Lee–Edwards boundary conditions [16, 17]. The first spectacular effect is the shear
thinning effect [17] illustrated in figures 5 and 6. Remarkably, this shear thinning is quite close
to the one predicted by mean-field theories, in that the high-shear-rate behaviour can be fitted
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Figure 3. Ck(tw + τ, tw) after a quench to T = 0.3, for various values of the waiting time tw .
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Figure 4. A parametric plot of integrated response versus correlation at T = 0.3; the different
symbols correspond to different waiting times, and the straight lines have slopes corresponding to
the equilibrium FDT (1/0.3) at large values of C and 1/0.65 at small C .

Figure 5. Viscosity versus shear rate for different temperatures in the range T = 0.15–0.6. The
different symbols refer to different temperatures (indicated in the figure). Note the similarity with
figure 2.

with a power law η(γ ) ∼ γ −α , with α � 2/3. In the glass phase, the behaviour appears to be
close to a yield stress fluid, σ = σ0 + Aγ α . This shear thinning is also seen in the correlation
functions (figure 7).
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Figure 6. The same data as in figure 5, plotted in the form of flow curves (shear stress versus
shear rate). At low shear rates and low temperatures, the stress seems to level off at a finite value,
indicating a yield stress fluid.

Figure 7. Ck(t) at T = 0.3 and various values of the shear rate. Note the similarity with figure 1.

The next step is to measure response functions, as for the ageing systems. Again, a ‘two-
temperature’ plot is found. In this case, it was shown that the same slopes (i.e. the same
FDRs) are obtained for many different pairs of response/correlations associated with various
observables, as illustrated in figure 8.

4. The fluctuation dissipation ratio and effective temperature

As indicated in the introduction, the FDR can be interpreted as the inverse of an effective
temperature. The ‘two-temperature’ scenario which appears to be obeyed by structural glasses
corresponds to an equilibration of fast degrees of freedom with the external temperature, while
slow degrees of freedom are out of equilibrium and have response properties equivalent to
that of a system at a higher temperature. To illustrate this picture physically, we have realized
a numerical experiment in which a ‘thermometer’, in the form of heavy tracer particles, was
coupled to the system. Because we have chosen large masses, we can adjust the Einstein
frequency of the tracer particles to values larger than the structural relaxation time, with the
result that the particles are effectively coupled to slow degrees of freedom. The average kinetic
energy of the tracers then provides a measure of the ‘temperature’ associated with the slow
degrees of freedom, and is found to be equal to the value that would be predicted from the
second slope of the fluctuation dissipation plot (see figure 7).
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Figure 8. A parametric plot of the integrated response at T = 0.3 and γ = 10−3. The different
symbols correspond to different observables, including in particular: coherent and incoherent
dynamical structure factors at various wavevectors (indicated in the figure), the off-diagonal stress
tensor, and the diffusivity (see [17] for details). The full line is the equilibrium FDT of slope
−1/0.3; the dashed lines have slope −1/0.65.

A physical interpretation of the two-temperature scenario in terms of the so-called
‘potential energy landscape’ picture has been given in [18, 19]. Within this picture, the system
evolution takes place on two timescales: on a short timescale the system essentially vibrates
around a fixed configuration in phase space, while on longer timescales it evolves between
configurations. The free energy can therefore be separated into configurational and vibrational
parts, and a different temperature is associated (through the usual thermodynamic formulation
∂S/∂ F = 1/T ) with each contribution. In nonequilibrium situations with two widely
separated timescales for evolution, the two temperatures (vibrational and configurational) are
different. By generalizing the reasoning that leads to the equilibrium fluctuation dissipation
theorem, it may be shown that each temperature will govern the FDR on the associated
timescale. This picture was verified quantitatively in [19] for ageing systems, but remains to
be confirmed for driven systems, in which some approximations made (such as the harmonic
approximation for computing vibrational contributions) may be doubtful.

5. Conclusions, perspectives

The picture that emerges from the simulations is, broadly speaking, consistent with the
theoretical picture developed throughout the last decade, based on the analogy between the
mode-coupling equations [8] and the mean-field description describing disordered systems [9].
This agreement is satisfactory, in the sense that this scenario provides the first rigorous statistical
mechanical treatment that encompasses essentially all the phenomenology of glass-forming
liquids. The thermodynamic consequences of this scenario have been explored in much detail,
up to quantitative comparison with simulation data [20]. However, it is important to realize the
limitations of this approach, which—like early mode-coupling theories—is unable to account
for the activated processes surmounting finite barriers that probably govern the relaxation of
many molecular systems in the vicinity of the experimental glass transition temperature. In
this respect, colloidal systems may be closer to an experimental realization of this theoretical
scenario. The fact that results of molecular simulations are apparently in good agreement with
this scenario may be related to their strong limitations as far as the exploration of timescales
is concerned.
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The strength of the theoretical picture, on the other hand, is in defining precise concepts
that can be probed in experiments, such as the effective temperature idea based on the FDR.
Such concepts are likely to retain their importance beyond mean-field theory, and some
experiments have started to test their applicability [21, 22] for ageing systems. Another
important aspect is the link with mode-coupling theories of liquids, with the possibility of
using such techniques—that allow one to use the available information on the structure of the
fluid—to study e.g. rheological problems within a rigorous statistical physics framework [23].
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